Automatic Image Annotation for Semantic Image Retrieval
نویسندگان
چکیده
This paper addresses the challenge of automatic annotation of images for semantic image retrieval. In this research, we aim to identify visual features that are suitable for semantic annotation tasks. We propose an image classification system that combines MPEG-7 visual descriptors and support vector machines. The system is applied to annotate cityscape and landscape images. For this task, our analysis shows that the colour structure and edge histogram descriptors perform best, compared to a wide range of MPEG-7 visual descriptors. On a dataset of 7200 landscape and cityscape images representing real-life varied quality and resolution, the MPEG-7 colour structure descriptor and edge histogram descriptor achieve a classification rate of 82.8% and 84.6%, respectively. By combining these two features, we are able to achieve a classification rate of 89.7%. Our results demonstrate that combining salient features can significantly improve classification of images. Disciplines Physical Sciences and Mathematics Publication Details This article was originally published as Shao, W, Naghdy, G and Phung, SL, Automatic Image Annotation for Semantic Image Retrieval, Lecture Notes in Computer Science, 4781, 2007, 369-378. Copyright SpringerVerlag. This journal article is available at Research Online: http://ro.uow.edu.au/infopapers/739 Automatic image annotation for semantic image retrieval Wenbin Shao, Golshah Naghdy, and Son Lam Phung SECTE, University of Wollongong, Wollongong NSW, 2522 Australia {ws909,golshah,phung}@uow.edu.au Abstract. This paper addresses the challenge of automatic annotation of images for semantic image retrieval. In this research, we aim to identify visual features that are suitable for semantic annotation tasks. We propose an image classification system that combines MPEG-7 visual descriptors and support vector machines. The system is applied to annotate cityscape and landscape images. For this task, our analysis shows that the colour structure and edge histogram descriptors perform best, compared to a wide range of MPEG-7 visual descriptors. On a dataset of 7200 landscape and cityscape images representing real-life varied quality and resolution, the MPEG-7 colour structure descriptor and edge histogram descriptor achieve a classification rate of 82.8% and 84.6%, respectively. By combining these two features, we are able to achieve a classification rate of 89.7%. Our results demonstrate that combining salient features can significantly improve classification of images. This paper addresses the challenge of automatic annotation of images for semantic image retrieval. In this research, we aim to identify visual features that are suitable for semantic annotation tasks. We propose an image classification system that combines MPEG-7 visual descriptors and support vector machines. The system is applied to annotate cityscape and landscape images. For this task, our analysis shows that the colour structure and edge histogram descriptors perform best, compared to a wide range of MPEG-7 visual descriptors. On a dataset of 7200 landscape and cityscape images representing real-life varied quality and resolution, the MPEG-7 colour structure descriptor and edge histogram descriptor achieve a classification rate of 82.8% and 84.6%, respectively. By combining these two features, we are able to achieve a classification rate of 89.7%. Our results demonstrate that combining salient features can significantly improve classification of images.
منابع مشابه
Fuzzy Neighbor Voting for Automatic Image Annotation
With quick development of digital images and the availability of imaging tools, massive amounts of images are created. Therefore, efficient management and suitable retrieval, especially by computers, is one of themost challenging fields in image processing. Automatic image annotation (AIA) or refers to attaching words, keywords or comments to an image or to a selected part of it. In this paper,...
متن کاملSemiautomatic Image Retrieval Using the High Level Semantic Labels
Content-based image retrieval and text-based image retrieval are two fundamental approaches in the field of image retrieval. The challenges related to each of these approaches, guide the researchers to use combining approaches and semi-automatic retrieval using the user interaction in the retrieval cycle. Hence, in this paper, an image retrieval system is introduced that provided two kind of qu...
متن کاملSemantic-Based Image Retrial in the VQ Compressed Domain using Image Annotation Statistical Models
متن کامل
Tags Re-ranking Using Multi-level Features in Automatic Image Annotation
Automatic image annotation is a process in which computer systems automatically assign the textual tags related with visual content to a query image. In most cases, inappropriate tags generated by the users as well as the images without any tags among the challenges available in this field have a negative effect on the query's result. In this paper, a new method is presented for automatic image...
متن کاملComparative Study on Automatic Image Annotation
With the detonative development of internet technologies in the web huge amount of images are available on the web. Large amount of research has been carried out on image retrieval since last few years. There is need for efficient and viable procedure to find visual information on demand. Recent research shows that there is semantic gap between low level features of image and semantic concepts ...
متن کاملA review on automatic image annotation techniques
Nowadays, more and more images are available. However, to find a required image for an ordinary user is a challenging task. Large amount of researches on image retrieval have been carried out in the past two decades. Traditionally, research in this area focuses on content based image retrieval. However, recent research shows that there is a semantic gap between content based image retrieval and...
متن کامل